Chapter 2: IoT Architecture and Ecosystem

Description

This chapter dives into the structure of an IoT system. You'll explore the four-layer architecture that defines how IoT devices sense, communicate, process, and deliver data, and get introduced to the broader ecosystem of platforms and technologies that support IoT development.

Learning Objectives

By the end of this chapter, you will be able to:

- Explain the layered architecture of IoT systems.
- Understand the role of each architectural layer.
- Identify key technologies and platforms in the IoT ecosystem.
- Differentiate between edge, fog, and cloud computing.

Section 1: Four-Layer IoT Architecture

Layer	Description
Perception Layer	The physical layer—sensors, actuators, and devices that gather data.
Network Layer	Transfers the data via communication protocols (Wi-Fi, Bluetooth, etc.).
Middleware Layer	Processes, stores, and analyzes the data—can be cloud-based or local.

Application Layer Interfaces with users—dashboards, mobile apps, automation tools.

Section 2: IoT Ecosystem Overview

The IoT ecosystem includes:

- Hardware: Sensors, microcontrollers, communication modules
- Software: Operating systems, firmware, device drivers
- **Connectivity**: Wi-Fi, LoRa, Zigbee, NB-IoT, etc.
- Cloud Platforms: AWS IoT, Google Cloud IoT, Azure IoT Hub
- Security Tools: Encryption, identity verification, access control
- User Applications: Mobile/web apps, AI/ML interfaces

Section 3: Edge, Fog, and Cloud Computing in IoT

Туре	Description	Use Case
Edge Computing	Data processing close to the device (e.g., on the microcontroller)	Real-time decisions in smart vehicles
Fog Computing	Intermediate layer between edge and cloud, reducing latency	Smart traffic control
Cloud Computing	Centralized processing and storage of large-scale data	Data analysis from smart cities and factories

Section 4: Examples of IoT Architectures

• Smart Home System

Perception: Door sensors, motion detectors Network: Wi-Fi Middleware: Home Assistant (on Raspberry Pi) Application: Mobile app to control and monitor

• Smart Agriculture System Perception: Soil moisture and temperature sensors Network: LoRa for long-range communication Middleware: Cloud server for data analysis Application: Web dashboard for irrigation control

🔽 Chapter Summary

- IoT systems follow a four-layer architecture: Perception, Network, Middleware, and Application.
- Each layer has a specific role in sensing, transmitting, analyzing, and visualizing data.
- The ecosystem includes hardware, software, platforms, and connectivity technologies.
- Edge and fog computing offer alternatives to centralized cloud processing for faster and local responses.